Supervaluationism

Marco Degano

Philosophical Logic 2025 3 November 2025

Readings

Suggested:

► Cobreros, Pablo & Tranchini, Luca (2019). Supervaluationism, Subvaluationism and the Sorites Paradox. In Sergi Oms & Elia Zardini (eds.), The Sorites Paradox. New York, NY: Cambridge University Press. pp. 38–62.

Higher-order Vagueness

Higher-order Vagueness

Outline

- 1. Supervaluationism
- 2. Modalized Supervaluationism

3. Higher-order Vagueness

4. Truth-functionality

Making things precise

Supervaluationism

Bas van Fraassen

Kit Fine

- ► Supervaluationism (van Fraassen 1966; Fine 1975): handle vagueness by evaluating formulas over a range of admissible precisifications.
- A precisification is a classical "sharpening" of the vocabulary that preserves clear positives and clear negatives.
- Example: the predicate *heap* may be sharpened to "has at least n grains of sand," for many choices of n (e.g. n = 1000, 1001, ...).
- ► Thus, multiple precisifications are admissible : supervaluationism does not single out a unique cutoff.

Truth-functionality

Semantic Indecision

The reason it's vague where the outback begins is not that there's this thing, the outback, with imprecise borders; rather there are many things, with different borders, and nobody has been fool enough to try to enforce a choice of one of them as the official referent of the word "outback."

Vaqueness is semantic indecision.

Modalized Supervaluationism

(Lewis 1986: On the Plurality of Worlds, p. 213)

Precisification

Supervaluationism

Definition (Precisification)

Let $v: P \to \{1, i, 0\}$ be a three-valued valuation. We say that a classical valuation v' is a *precisification* of v, and we write v < v' iff:

$$v(p) = 1 \Rightarrow v'(p) = 1$$

$$v(p) = 0 \Rightarrow v'(p) = 0$$

$$v(p) = i \Rightarrow v'(p) \in \{0, 1\}$$

Supertrue and Superfalse

A formula is *supertrue* when it is true on *all* its precisifications; superfalse when it is false on all of them.

Definition (Supertruth & Superfalsity)

Let $v: P \to \{1, i, 0\}$ be three-valued and write Prec(v) := $\{v':v\leq v'\}$ for its set of classical precisifications. For any formula φ :

(Supertruth)
$$v \models^1 \varphi \iff \forall v' \in \operatorname{Prec}(v) : v'(\varphi) = 1$$

(Superfalsity) $v \models^0 \varphi \iff \forall v' \in \operatorname{Prec}(v) : v'(\varphi) = 0$

Logical Consequence

We can define both a *global* and a *local* notion of consequence.

Definition (Global consequence)

 $\Gamma \models_q \varphi$ iff for all three-valued valuations v, if $v \models^1 \gamma$ for all $\gamma \in \Gamma$, then $v \models^1 \varphi$.

Definition (Local consequence)

 $\Gamma \models_{l} \varphi$ iff for all three-valued valuations v, for all $v' \in \text{Prec}(v)$, if $v'(\gamma) = 1$ for all $\gamma \in \Gamma$, then $v'(\varphi) = 1$.

Local and Global

Supervaluationism

- \blacktriangleright Over the base propositional language $\{\neg, \land, \lor, \rightarrow\}$, global and local consequence coincide.
- ► In fact, supervaluationist consequence is equivalent to classical consequence.

Fact (Consequence equivalence)

$$\Gamma \models_{a} \varphi \text{ iff } \Gamma \models_{l} \varphi \text{ iff } \Gamma \models_{\text{CL}} \varphi$$

Consequence equivalence (proof sketch)

$$\Gamma \models_g \varphi \Rightarrow \Gamma \models_l \varphi \Rightarrow \Gamma \models_{\mathrm{CL}} \varphi \Rightarrow \Gamma \models_g \varphi$$

For any classical $w: P \to \{0,1\}$, we can view w as three-valued (no i), so $\operatorname{Prec}(w) = \{w\}$. We write $v'(\Gamma) = 1$ for " $\forall \gamma \in \Gamma, \ v'(\gamma) = 1$ ".

- (1) $\Gamma \models_q \varphi \Rightarrow \Gamma \models_l \varphi$. Let v be arbitrary and let $v' \in \operatorname{Prec}(v)$ with $v'(\Gamma) = 1$. Then $v' \models^1 \Gamma$ (since $\operatorname{Prec}(v') = \{v'\}$). By global consequence, $v' \models^1 \varphi$, hence $v'(\varphi) = 1$.
- (2) $\Gamma \models_{l} \varphi \Rightarrow \Gamma \models_{CL} \varphi$. Let w be classical with $w(\Gamma) = 1$. Viewing w as three-valued gives $\operatorname{Prec}(w) = \{w\}$. By local consequence, $w(\varphi) = 1$.
- (3) $\Gamma \models_{\mathrm{CL}} \varphi \Rightarrow \Gamma \models_{g} \varphi$. Fix any three-valued v. If $v \models^{1} \Gamma$, then for all $v' \in \operatorname{Prec}(v)$ we have $v'(\Gamma) = 1$. By classical consequence, $v'(\varphi) = 1$ for all such v', so $v \models^1 \varphi$.

Supervaluations as sets of valuations

- ightharpoonup For a three-valued $v: P \to \{1, i, 0\}$, let $\operatorname{Prec}(v)$ be the set of all classical *precisifications* of v.
- ightharpoonup Alternatively, start from an arbitrary nonempty set $V \subseteq \{0,1\}^P$ of classical valuations and evaluate formulas pointwise over V.

Supertruth/superfalsity lift as:

$$V \models^1 \varphi \iff \forall v' \in V : v'(\varphi) = 1$$

$$V \models^0 \varphi \iff \forall v' \in V : v'(\varphi) = 0$$

This is equivalent to the original definition via v, taking $V = \operatorname{Prec}(v)$

Pointed evaluations

Given a non-empty set of classical valuations V^1 , define the pointed satisfaction relation $V, v \models \varphi$ for $v \in V$ by:

Higher-order Vagueness

$$\begin{array}{lll} V,v \models p & \text{iff} & v(p) = 1 \\ V,v \models \neg \varphi & \text{iff} & V,v \not\models \varphi \\ V,v \models \varphi \wedge \psi & \text{iff} & V,v \models \varphi \text{ and } V,v \models \psi \\ V,v \models \varphi \vee \psi & \text{iff} & V,v \models \varphi \text{ or } V,v \models \psi \\ V,v \models \varphi \rightarrow \psi & \text{iff} & V,v \not\models \varphi \text{ or } V,v \models \psi \end{array}$$

Definition (Supertruth)

Given a non-empty V, a formula φ is supertrue iff $V, v \models \varphi$ for all $v \in V$. We write $V \models^1 \varphi$.

Likewise, φ is superfalse iff $V \models^1 \neg \varphi$. We write $V \models^0 \varphi$.

¹Allowing empty V does not change the resulting logic (as $\varnothing \models^1 \varphi$ for any φ), but it matters for satisfiability.

Local and Global

Likewise, global and local consequence can be recast in this way:

Higher-order Vagueness

Definition (Global consequence)

 $\Gamma \models_q \varphi$ iff for all non-empty V, if $V \models^1 \gamma$ for all $\gamma \in \Gamma$, then

Definition (Local consequence)

 $\Gamma \models_{l} \varphi$ iff for all non-empty V, for all $v \in V$, if $V, v \models \gamma$ for all $\gamma \in \Gamma$, then $V, v \models \varphi$.

Bivalence vs. Law of Excluded Middle

- **Failure of bivalence:** There are non-empty V and p with neither $V \models^{1} p$ nor $V \models^{1} \neg p$.
- ▶ Validity of LEM: Every classical tautology is supertrue. In particular for every non-empty $V, V \models^{1} p \vee \neg p$.

Let
$$V=\{v_1,v_2\}$$
 with $v_1(p)=1$ and $v_2(p)=0$. Then
$$V\not\models^1 p\quad\text{and}\quad V\not\models^1 \neg p$$

since p fails at v_2 and $\neg p$ fails at v_1 .

Modelling the Sorites

▶ Recall the descending Sorites sequence from p_1 to p_N .

$$\begin{array}{c}
p_1 \\
p_1 \to p_2 \\
\vdots \\
p_{N-1} \to p_N \\
\hline
p_N
\end{array}$$

- ▶ A faithful model V for a descending Sorites series satisfies:
 - $ightharpoonup V \models^1 p_1$
 - $ightharpoonup V \models^0 p_N$
 - $ightharpoonup \exists k \ (1 < k < N) \ \text{with} \ V \not\models^1 p_k \ \text{and} \ V \not\models^1 \neg p_k$
 - $\forall v \in V \ \forall m \in \{1, \dots, N\}:$

$$\begin{cases} v(p_m) = 1 \Rightarrow \forall k \ (1 \le k \le m \Rightarrow v(p_k) = 1) \\ v(p_m) = 0 \Rightarrow \forall k \ (m \le k \le N \Rightarrow v(p_k) = 0) \end{cases}$$

An example

▶ Take N = 5. A faithful model is:

\overline{V}	p_1	p_2	p_3	p_4	p_5
$\overline{v_1}$	1	0	0	0	0
v_2	1	1	0	0	0
v_3	1	1	1	0	0
v_4	1	1	1	1	0

$$V \models^1 p_1$$
 $V \not\models^1 (p_1 \to p_2) \text{ and } V \not\models^0 (p_1 \to p_2)$
 $V \not\models^1 (p_2 \to p_3) \text{ and } V \not\models^0 (p_2 \to p_3)$
 $V \not\models^1 (p_3 \to p_4) \text{ and } V \not\models^0 (p_3 \to p_4)$
 $V \not\models^1 (p_4 \to p_5) \text{ and } V \not\models^0 (p_4 \to p_5)$
 $V \models^0 p_5$

An example (cut-off as a disjunction)

\overline{V}	$ p_1$	p_2	p_3	p_4	p_5
$\overline{v_1}$	1	0	0	0	0
v_2	1	1	0	0	0
v_3	1	1	1	0	0
v_4	1	1	1	1	0

- $\blacktriangleright A: (p_1 \rightarrow p_2) \land (p_2 \rightarrow p_3) \land (p_3 \rightarrow p_4) \land (p_4 \rightarrow p_5)$
- $ightharpoonup \neg A: (p_1 \land \neg p_2) \lor (p_2 \land \neg p_3) \lor (p_3 \land \neg p_4) \lor (p_4 \land \neg p_5)$
- \blacktriangleright A is superfalse, and $\neg A$ is supertrue. However, none of the disjuncts is supertrue (no specific cut-off point).

Assessing the situation

Supervaluationist answer to the Sorites: not all conditional premises are supertrue (so the argument is blocked), *without committing to which step* (no conditional is superfalse).

- ▶ In first-order guise: $\forall n \ (\varphi(n) \to \varphi(n+1))$ is superfalse (read: series of conjunctions), but $\exists n \ (\varphi(n) \land \neg \varphi(n+1))$ is supertrue (read: series of disjunctions).
- Yet for each particular d, $\{\varphi(d) \land \neg \varphi(d+1)\}$ is not supertrue. (No singled-out cut-off.)

The notion of truth

- Supervaluationism lifts truth from a single valuation to a set of valuations. This echoes two frameworks:
 - 1. **Modal logic:** formulas are evaluated relative to possible worlds. A formula is true in a model if it is true in all worlds of the model.

Higher-order Vagueness

- 2. **Team semantics:** formulas are evaluated w.r.t. a *team* (set of valuations). A formula is true in a model if it is true in all valuations of the team.
- Over the base language (without modal operators), both are equivalent to classical logic.
- But lifting truth to sets of valuations yields loss of bivalence.
- ► Adding modal operators (next) or defining different connectives yields logic whose consequence is different from classical propositional logic.

Modalized Supervaluationism

Team Semantics

► In team semantics (Hodges 1997, Väänänen 2007), the satisfaction relation uses a *possibly empty* set V of valuations and is defined over sets (not pointed):

```
\begin{array}{lll} V \models p & \text{iff} & \forall v \in V: \ v(p) = 1 \\ V \models \neg \varphi & \text{iff} & \forall v \in V: \ \{v\} \not\models \varphi \\ V \models \varphi \land \psi & \text{iff} & V \models \varphi \text{ and } V \models \psi \\ V \models \varphi \lor \psi & \text{iff} & \exists V', V'' \ (V' \cup V'' = V, \ V' \models \varphi, \ V'' \models \psi) \end{array}
```

Connection to supervaluationism (for the base language):

$$V \models \varphi \text{ iff } \forall v \in V : \{v\} \models \varphi \text{ (i.e. } v(\varphi) = 1)$$

► Note that this definition of disjunction (over possibly empty teams) gives classical disjunction:

$$V \models p \lor q \text{ iff } \forall v \in V : v(p) = 1 \text{ or } v(q) = 1$$

Higher-order Vagueness

Outline

- 1. Supervaluationism
- 2. Modalized Supervaluationism

3. Higher-order Vagueness

4. Truth-functionality

 \blacktriangleright Add a determinacy operator \triangle ("definitely"). Think of \triangle as a necessity operator where precisifications act as worlds.

Higher-order Vagueness

- lntuitively, Δp is true at a precisification v' of v iff p holds at all precisifications of v.
- ► For simplicity, first take the accessibility relation to be universal:

$$V, v \models \Delta \varphi \quad \text{iff} \quad \forall v' \in V : V, v' \models \varphi$$

Deduction Theorem

$$p \models_g \Delta p$$

Let V be any non-empty set of valuations and assume $V \models^1 p$. Then p holds at every $v \in V$, hence $V \models^1 \Delta p$.

$$\not\models_g p \to \Delta p$$

Take $V=\{v_1,v_2\}$ with $v_1(p)=1$ and $v_2(p)=0$. Then $V,v_1\models p$ but $V,v_1\not\models \Delta p$ (since not all $v'\in V$ satisfy p). Hence $V,v_1\not\models p\to \Delta p$. Therefore $p\to\Delta p$ is not globally valid.

So the deduction theorem fails: $\Gamma, \varphi \models_a \psi \not\Rightarrow \Gamma \models_a \varphi \rightarrow \psi$

Global vs. Local with Λ

$$\varphi \models_g \Delta \varphi$$

$$\varphi \not\models_l \Delta \varphi$$

- ▶ Global holds: If $V \models^1 p$ then v(p) = 1 for all $v \in V$, so $V, v \models \Delta p$ for all v. Hence $V \models^{1} \Delta p$.
- ► Local fails: Take $V = \{v_1, v_2\}$ with $v_1(p) = 1$ and $v_2(p) = 0$. Then $V, v_1 \models p$ but $V, v_1 \not\models \Delta p$.

Semantics

▶ Formulas are evaluated not just wrt a set of valuations but a pair $M = \langle V, R \rangle$ with $V \neq \varnothing$ and $R \subseteq V \times V$. Each $v \in V$ is a classical valuation $v : P \to \{0,1\}$.

$$\begin{array}{lll} M,v\models p & \text{iff} & v(p)=1 \\ M,v\models \neg\varphi & \text{iff} & M,v\not\models\varphi \\ M,v\models\varphi\wedge\psi & \text{iff} & M,v\models\varphi \text{ and } M,v\models\psi \\ M,v\models\varphi\vee\psi & \text{iff} & M,v\models\varphi \text{ or } M,v\models\psi \\ M,v\models\varphi\to\psi & \text{iff} & M,v\not\models\varphi \text{ or } M,v\models\psi \\ M,v\models\Delta\varphi & \text{iff} & \forall v'\in V \ (vRv'\Rightarrow M,v'\models\varphi) \end{array}$$

Supertruth: $M \models^1 \varphi : \iff \forall v \in V \ (M, v \models \varphi)$

Global:
$$\Gamma \models_g \varphi \iff \forall M \ (M \models^1 \Gamma \Rightarrow M \models^1 \varphi)$$

Local (modal logic): $\Gamma \models_l \varphi \iff \forall M \, \forall v \in V(M, v \models \Gamma \Rightarrow M, v \models \varphi)$

Higher-order Vagueness

Outline

- 1. Supervaluationism
- 2. Modalized Supervaluationism

3. Higher-order Vagueness

4. Truth-functionality

Higher-order Vagueness

Supervaluationism

- ▶ Define indeterminate: $\nabla \varphi := \neg \Delta \varphi \land \neg \Delta \neg \varphi$.
- ▶ With universal accessibility:

 $\nabla \Delta p$ is not satisfiable.

Frame constraints \leftrightarrow modal axioms (for Δ)

T (reflexive) $\Delta \varphi \rightarrow \varphi$

4 (transitive) $\Delta \varphi \rightarrow \Delta \Delta \varphi$

B (symmetric) $\varphi \to \Delta \neg \Delta \neg \varphi$

5 (euclidean) $\neg \Delta \varphi \rightarrow \Delta \neg \Delta \varphi$

S5 / equivalence T+4+5; T+4+B; T+B+5 $\Rightarrow \Delta\Delta\varphi \vee \Delta\neg\Delta\varphi$ is valid.

▶ To allow higher-order vagueness: we need to drop some axioms. Which ones to keep for a 'Definitely' operator?

R is reflexive and transitive (S4-frames)

In reflexive and transitive frames, higher-order vagueness for Δ is *possible*: $\nabla \Delta p$ is satisfiable.

Higher-order Vagueness

Let
$$M=\langle V,R\rangle$$
 with $V=\{a,b,c\}$ and
$$R=\{(x,x)\mid x\in V\}\ \cup\ \{(a,b),(a,c)\}$$

(This R is transitive: from aRb and bRb we get aRb; similarly for c.) Valuation: p(b) = 1, p(c) = 0 (value at a arbitrary).

- $ightharpoonup R[b] = \{b\}, \text{ so } M, b \models \Delta p.$
- $ightharpoonup R[c] = \{c\}, \text{ so } M, c \not\models \Delta p.$
- ▶ Therefore $M, a \models \nabla \Delta p$.

Outline

- 1. Supervaluationism
- 2. Modalized Supervaluationism

- 3. Higher-order Vagueness
- 4. Truth-functionality

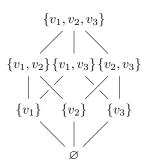
- ► Truth-functionality: the truth of a complex sentence is a function of the truth of its constituents.
- Supervaluationist theories are not truth-functional at the level of supertruth/superfalsity.

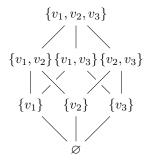
Higher-order Vagueness

► For instance, the supertruth of $\neg p$ is not determined solely by whether p is supertrue.

An algebraic perspective

- ▶ Given V, the powerset $\mathcal{P}(V)$ identifies formulas with their set of supporting valuations.
- ▶ Take $V = \{v_1, v_2, v_3\}$ with $v_1(p) = 1$, $v_2(q) = 1$, others 0. Then p corresponds to $\{v_1\}$, and $p \lor q$ to $\{v_1, v_2\}$.





Functionality is preserved extensionally:

Modalized Supervaluationism

$$f(p) = \{v \in V : v(p) = 1\}$$

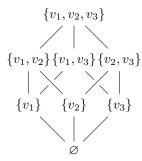
$$f(\neg \varphi) = V \setminus f(\varphi)$$

$$f(\varphi \lor \psi) = f(\varphi) \cup f(\psi)$$

$$f(\varphi \land \psi) = f(\varphi) \cap f(\psi)$$

 φ is supertrue in V iff $f(\varphi) = V$; superfalse iff $f(\varphi) = \emptyset$.

Supervaluations and degrees



Higher-order Vagueness

- ► This representation suggests a degree-theoretic flavor.
- ► However, take $V = \{v_1, v_2, v_3\}$ with $v_1(p) = 1, v_2(q) = 1,$ others 0.
- ▶ Then $f(p) = \{v_1\}$ and $f(\neg p) = \{v_2, v_3\}$. But supervaluationism does *not* rank p as 'less true' than $\neg p$.

Discussion

▶ **Disjunction** can be supertrue without any supertrue disjunct, undermining the intuitive idea that a true disjunction is always made true by one of its disjuncts.

Higher-order Vagueness

- ▶ While theoremhood over the base language is classical, familiar argument forms needn't be globally supervalid with Δ (e.g., conditional proof)
- ► Supertruth is not disquotational. If we identify ordinary truth with supertruth, the **T-schema is no longer valid** (though this might be an advantage for some).
- ► Higher-order vagueness is problematic with S5 axioms (plus a concern you have to address in your second assignment)
- ► Supervaluationists say "there is an *n* where the cutoff occurs" (since $\exists n \ (\varphi(n) \land \neg \varphi(n+1))$ is supertrue) yet deny there *really* is a sharp cutoff. Some see this as talking as if sharp boundaries exist.

Exercises

Supervaluationism

1. Show that (slide 25):

(a)
$$\Gamma \models_{l} \varphi$$
 \Rightarrow $\Gamma \models_{g} \varphi$
(b) $\Gamma, \varphi \models_{l} \psi$ \Leftrightarrow $\Gamma \models_{l} \varphi \rightarrow \psi$
(c) $\Gamma \models_{g} \varphi \rightarrow \psi$ \Rightarrow $\Gamma, \varphi \models_{g} \psi$
(d) $\models_{g} \varphi$ \Leftrightarrow $\models_{l} \varphi$
(e) $\varphi \models_{g} \psi$ \Rightarrow $\neg \psi \models_{g} \neg \varphi$

- (f) If R is not reflexive, then $\not\models (\Delta \varphi \to \varphi)$
- (g) $\nabla \Delta p$ is satisfiable on reflexive and symmetric frames
- 2. On the set-theoretic preservation of functionality (slide 32), add the clauses for:
 - 2.1 Universal Δ
 - 2.2 General Δ